首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7682篇
  免费   656篇
  国内免费   1114篇
化学   6820篇
晶体学   28篇
力学   368篇
综合类   47篇
数学   341篇
物理学   1848篇
  2024年   6篇
  2023年   174篇
  2022年   160篇
  2021年   225篇
  2020年   335篇
  2019年   235篇
  2018年   215篇
  2017年   281篇
  2016年   340篇
  2015年   271篇
  2014年   345篇
  2013年   582篇
  2012年   404篇
  2011年   420篇
  2010年   378篇
  2009年   503篇
  2008年   434篇
  2007年   454篇
  2006年   464篇
  2005年   390篇
  2004年   387篇
  2003年   305篇
  2002年   226篇
  2001年   199篇
  2000年   188篇
  1999年   168篇
  1998年   172篇
  1997年   144篇
  1996年   116篇
  1995年   138篇
  1994年   123篇
  1993年   101篇
  1992年   92篇
  1991年   92篇
  1990年   74篇
  1989年   52篇
  1988年   49篇
  1987年   34篇
  1986年   23篇
  1985年   22篇
  1984年   22篇
  1983年   6篇
  1982年   22篇
  1981年   19篇
  1980年   23篇
  1979年   19篇
  1978年   12篇
  1973年   2篇
  1966年   1篇
  1959年   1篇
排序方式: 共有9452条查询结果,搜索用时 15 毫秒
81.
Structurally defined graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices. Low band gap (<1 eV) GNRs are particularly important when considering the Schottky barrier in device performance. Here, we demonstrate the first solution synthesis of 8-AGNRs through a carefully designed arylated polynaphthalene precursor. The efficiency of the oxidative cyclodehydrogenation of the tailor-made polymer precursor into 8-AGNRs was validated by FT-IR, Raman, and UV/Vis-near-infrared (NIR) absorption spectroscopy, and further supported by the synthesis of naphtho[1,2,3,4-ghi]perylene derivatives ( 1 and 2 ) as subunits of 8-AGNR , with a width of 0.86 nm as suggested by the X-ray single crystal analysis. Low-temperature scanning tunneling microscopy (STM) and solid-state NMR analyses provided further structural support for 8-AGNR . The resulting 8-AGNR exhibited a remarkable NIR absorption extending up to ∼2400 nm, corresponding to an optical band gap as low as ∼0.52 eV. Moreover, optical-pump TeraHertz-probe spectroscopy revealed charge-carrier mobility in the dc limit of ∼270 cm2 V−1 s−1 for the 8-AGNR .  相似文献   
82.
Photocatalysis, particularly plasmon-mediated photocatalysis, offers a green and sustainable approach for direct nitrogen oxidation into nitrate under ambient conditions. However, the unsatisfactory photocatalytic efficiency caused by the limited localized electromagnetic field enhancement and short hot carrier lifetime of traditional plasmonic catalysts is a stumbling block to the large-scale application of plasmon photocatalytic technology. Herein, we design and demonstrate the dual-plasmonic heterojunction (Bi/CsxWO3) achieves efficient and selective photocatalytic N2 oxidation. The yield of NO3 over Bi/CsxWO3 (694.32 μg g−1 h−1) are 2.4 times that over CsxWO3 (292.12 μg g−1 h−1) under full-spectrum irradiation. The surface dual-plasmon resonance coupling effect generates a surge of localized electromagnetic field intensity to boost the formation efficiency and delay the self-thermalization of energetic hot carriers. Ultimately, electrons participate in the formation of ⋅O2, while holes involve in the generation of ⋅OH and the activation of N2. The synergistic effect of multiple reactive oxygen species drives the direct photosynthesis of NO3, which achieves the overall-utilization of photoexcited electrons and holes in photocatalytic reaction. The concept that the dual-plasmon resonance coupling effect facilitates the directional overall-utilization of photoexcited carriers will pave a new way for the rational design of efficient photocatalytic systems.  相似文献   
83.
Herein, the exposure of highly-active nitrogen cation sites has been accomplished by photo-driven quasi-topological transformation of a 1,10-phenanthroline-5,6-dione-based covalent organic framework (COF), which contributes to hydrogen peroxide (H2O2) synthesis during the 2-electron O2 photoreduction. The exposed nitrogen cation sites with photo-enhanced Lewis acidity not only act as the electron-transfer motor to adjust the inherent charge distribution, powering continuous and stable charge separation, and broadening visible-light adsorption, but also providing a large number of active sites for O2 adsorption. The optimal catalyst shows a high H2O2 production rate of 11965 μmol g−1 h−1 under visible light irradiation and a remarkable apparent quantum yield of 12.9 % at 400 nm, better than most of the previously reported COF photocatalysts. This work provides new insights for designing photo-switchable nitrogen cation sites as catalytic centers toward efficient solar to chemical energy conversion.  相似文献   
84.
Porous materials with d3 electronic configuration open metal sites have been proved to be effective adsorbents for N2 capture and N2/O2 separation. However, the reported materials remain challenging to address the trade-off between adsorption capacity and selectivity. Herein, we report a robust MOF, MIL-102Cr, that features two binding sites, can synergistically afford strong interactions for N2 capture. The synergistic adsorption site exhibits a benchmark Qst of 45.0 kJ mol−1 for N2 among the Cr-based MOFs, a record-high volumetric N2 uptake (31.38 cm3 cm−3), and highest N2/O2 selectivity (13.11) at 298 K and 1.0 bar. Breakthrough experiments reveal that MIL-102Cr can efficiently capture N2 from a 79/21 N2/O2 mixture, providing a record 99.99 % pure O2 productivity of 0.75 mmol g−1. In situ infrared spectroscopy and computational modelling studies revealed that a synergistic adsorption effect by open Cr(III) and fluorine sites was accountable for the strong interactions between the MOF and N2.  相似文献   
85.
An open tubular capillary electrochromatography column covalently bonded with polystyrene sulfonate was prepared via in situ polymerization using functionalized Azo-initiator 4,4′-Azobis(4-cyanopentanoyl chloride). Scanning electron, fluorescence, and atomic force microscopy techniques showed the formation of a relatively rough layer of polymer. In addition, –CN and C = O stretching vibrations from infrared spectroscopy proved the successful immobilization of the azo-initiator through covalent bonding and X-ray photoelectron spectroscopy confirmed the elemental composition of the formed polymer layer. The prepared column was found to be appropriate for small and medium-sized molecules separation. Compared to bare fused silica capillary column higher selectivity and resolution were obtained for the separation of alkaloids, sulfonamides, and peptides as a result of the electrostatic and pi-pi stacking interactions between the small organic molecules and the coated column without compromising the electroosmotic flow mobility. Separation efficiency was also increased compared to the bare capillary for the separation of alkaloids (about 1.5 times). Moreover, intraday, inter-day, intra-batch, and inter-batch relative standard deviation values of retention time and peak area of peptides were within 2% and 10%, respectively, indicating good repeatability of the column preparation procedure. The developed method for the covalent bonding of polymers through a functionalized azo-initiator could represent a promising stable method for the preparation of an open tubular column.  相似文献   
86.
In this work, the preparative separation of quinolyridine alkaloids from seeds of T. lanceolata by conventional and pH-zone-refining counter-current chromatography. Traditional counter-current chromatography separation was performed by a flow-rate changing strategy with a solvent system of ethyl acetate-n-butanol-water (1:9:10, v/v) and 200 mg sample loading. Meanwhile, the pH-zone-refining mode was adopted for separating 2.0 g crude alkaloid extracts with the chloroform-methanol-water (4:3:3, v/v) solvent system using the stationary and mobile phases of 40 mM hydrochloric acid and 10 mM triethylamine. Finally, six compounds, including N-formylcytisine (two conformers) ( 1 ), N-acetycytisine (two conformers) ( 2 ), (-)-cytisine ( 3 ), 13-β-hydroxylthermopsine ( 4 ), N-methylcytisine ( 5 ), and thermopsine ( 6 ) were successfully obtained in the two counter-current chromatography modes with the purities over 96.5%. Moreover, we adopted nuclear magnetic resonance and mass spectrometry for structural characterization. Based on the obtained findings, the pH-zone-refining mode was the efficient method to separate quinolyridine alkaloids relative to the traditional mode.  相似文献   
87.
A high-performance liquid chromatography-ultraviolet method was developed for rapidly and simultaneously analyzing novel and typical bisphenols in building materials, including bisphenol S, diphenolic acid, bisphenol F, bisphenol E, bisphenol A, bisphenol B, bisphenol AF, bisphenol AP, bisphenol C, bisphenol FL, bisphenol Z, bisphenol BP, bisphenol M, and bisphenol P. By using a Kromasil 100–5 C18 column, these bisphenols were completely separated in 40 min via gradually increasing the concentration of methanol in the mobile phase from 45 to 80% during the elution process. In particular, this method achieved the synchronous analysis of bisphenol S, diphenolic acid, bisphenol FL, bisphenol BP, and bisphenol M through HPLC, which were difficult to separate and had to be identified and detected through mass spectrometry. The limits of detection of the method ranged from 0.002 to 0.040 mg/L for these 14 bisphenols, with a precision of less than 4.9% (n = 7, c = 0.05 mg/L). The analytical results for five types of building materials (phenolic, epoxy, polycarbonate, polyester, and polysulfone resins) indicated that the proposed method is appropriated for the rapid measurement of bisphenols in real samples.  相似文献   
88.
通过电感耦合等离子体质谱法(ICP-MS)测定土壤中的碘。样品预处理采用艾斯卡试剂熔融、热水提取和阳离子树脂静态交换,试验加入了不同剂量的阳离子交换树脂在不同程度上降低了溶液中Na+ 和Zn2+等阳离子的盐效应干扰。研究了乙醇在ICP-MS中对碘元素的增强效应,用3%的氨水溶液清洗进样系统,有效减少的碘的记忆效应和清洗时间。该方法线性范围宽,方法灵敏度高,检出限低,试剂用量少,环境友好。对苏州及周边区域若干非污染土壤点位进行采样、制备和测试,碘平均含量为2.7μg.g-1;同步测试国家有证标准物质,精密度和准确度良好。  相似文献   
89.
The nano-LC technique is increasingly used for both fast studies on enantiomeric analysis and test beds of novel stationary phases due to the small volumes involved and the short conditioning and analysis times. In this study, the enantioseparation of 10 drugs from different families was carried out by nano-LC, utilizing silica with immobilized amylose tris(3-chloro-5-methylphenylcarbamate) column. The effect on chiral separation caused by the addition of different salts to the mobile phase was evaluated. To simultaneously separate as many enantiomers as possible, the effect of buffer concentration in the mobile phase was studied, and, to increase the sensitivity, a liquid–liquid microextraction based on the use of isoamyl acetate as sustainable extraction solvent was applied to pre-concentrate four chiral drugs from tap and environmental waters, achieving satisfactory recoveries (>70%).  相似文献   
90.
Wear debris analysis provides an early warning of mechanical transmission system aging and wear fault diagnosis, which has been widely used in machine health monitoring. The ability to detect and distinguish the ferromagnetic and nonmagnetic debris in oil is becoming an effective way to assess the health status of machinery. In this work, an Fe-poly(dimethylsiloxane) (PDMS)-based magnetophoretic method for the continuous separation of ferromagnetic iron particles by diameter and the isolation of ferromagnetic particles and nonmagnetic particles with similar diameter by type is developed. The particles experience magnetophoretic effects when passing through the vicinity of the Fe-PDMS where the strongest gradient of the magnetic fields exists. By choosing a relatively short distance between the magnet and the sidewall of the horizontal main channel and the length of Fe-PDMS with controlled particles flow rate, the diameter-dependent separation of ferromagnetic iron particles, that is, smaller than 7 µm, in the range of 8–12 µm, and larger than 14 µm, and the isolation of ferromagnetic iron particles and nonmagnetic aluminum particles based on opposite magnetophoretic behaviors by types are demonstrated, providing a potential method for the detection of wear debris particles with a high sensitivity and resolution and the diagnostic of mechanical system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号